Normalization Propagation: A Parametric Technique for Removing Internal Covariate Shift in Deep Networks
نویسندگان
چکیده
While the authors of Batch Normalization (BN) identify and address an important problem involved in training deep networks– Internal Covariate Shift– the current solution has certain drawbacks. For instance, BN depends on batch statistics for layerwise input normalization during training which makes the estimates of mean and standard deviation of input (distribution) to hidden layers inaccurate due to shifting parameter values (especially during initial training epochs). Another fundamental problem with BN is that it cannot be used with batch-size 1 during training. We address these drawbacks of BN by proposing a non-adaptive normalization technique for removing covariate shift, that we call Normalization Propagation. Our approach does not depend on batch statistics, but rather uses a data-independent parametric estimate of mean and standard-deviation in every layer thus being computationally faster compared with BN. We exploit the observation that the pre-activation before Rectified Linear Units follow Gaussian distribution in deep networks, and that once the first and second order statistics of any given dataset are normalized, we can forward propagate this normalization without the need for recalculating the approximate statistics for hidden layers.
منابع مشابه
Solving internal covariate shift in deep learning with linked neurons
This work proposes a novel solution to the problem of internal covariate shift and dying neurons using the concept of linked neurons. We define the neuron linkage in terms of two constraints: first, all neuron activations in the linkage must have the same operating point. That is to say, all of them share input weights. Secondly, a set of neurons is linked if and only if there is at least one m...
متن کاملBatch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
Training Deep Neural Networks is complicated by the fact that the distribution of each layer’s inputs changes during training, as the parameters of the previous layers change. This slows down the training by requiring lower learning rates and careful parameter initialization, and makes it notoriously hard to train models with saturating nonlinearities. We refer to this phenomenon as internal co...
متن کاملNormalization of Neural Networks using Analytic Variance Propagation
We address the problem of estimating statistics of hidden units in a neural network using a method of analytic moment propagation. These statistics are useful for approximate whitening of the inputs in front of saturating non-linearities such as a sigmoid function. This is important for initialization of training and for reducing the accumulated scale and bias dependencies (compensating covaria...
متن کاملRiemannian approach to batch normalization
Batch Normalization (BN) has proven to be an effective algorithm for deep neural network training by normalizing the input to each neuron and reducing the internal covariate shift. The space of weight vectors in the BN layer can be naturally interpreted as a Riemannian manifold, which is invariant to linear scaling of weights. Following the intrinsic geometry of this manifold provides a new lea...
متن کاملEfficient Short-Term Electricity Load Forecasting Using Recurrent Neural Networks
Short term load forecasting (STLF) plays an important role in the economic and reliable operation ofpower systems. Electric load demand has a complex profile with many multivariable and nonlineardependencies. In this study, recurrent neural network (RNN) architecture is presented for STLF. Theproposed model is capable of forecasting next 24-hour load profile. The main feature in this networkis ...
متن کامل